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Abstract We show that a compact feasible set of a standard semi-infinite optimization
problem can be approximated arbitrarily well by a level set of a single smooth function with
certain regularity properties. This function is constructed as the mollification of the lower level
optimal value function. Moreover, we use correspondences between Karush–Kuhn–Tucker
points of the original and the smoothed problem, and between their associated Morse indices,
to prove the connectedness of the so-called min–max digraph for semi-infinite problems.
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1 Introduction

We consider the semi-infinite optimization problem

SI P : min
x∈Rn

f (x) subject to g(x, y) ≥ 0 for all y ∈ Y

with objective function f ∈ C2(Rn, R), constraint function g ∈ C2(Rn × R
m, R), and a

nonempty and compact index set Y ⊂ R
m . We assume that Y is described by finitely many

inequality constraints,

Y = {y ∈ R
m | v(y) ≥ 0}

with v ∈ C2(Rm, R
s) and s ∈ N. Problems of this type, in which a finite-dimensional deci-

sion variable is subject to infinitely many inequality constraints, are called semi-infinite.
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They have been studied systematically since the 1960s. Important early contributions regard-
ing optimality conditions and duality theory for semi-infinite problems are given in [2,10] for
linear semi-infinite problems, and in [16,36] for nonlinear problems. For excellent reviews
with hundreds of references on semi-infinite programming we refer to [17,30]. A standard ref-
erence for linear semi-infinite problems is [11], and [18,31,32] overview the existing numer-
ical methods for linear and nonlinear problems. A new numerical approach was recently
introduced in [9].

We denote the feasible set of SIP by

M = {x ∈ R
n | g(x, y) ≥ 0 for all y ∈ Y }.

A basic problem in semi-infinite optimization is to check whether a point x ∈ R
n is feasi-

ble, since this involves the verification of infinitely many inequality constraints. After some
preliminaries in Sect. 2, in Sect. 3 we will show that a nonempty and compact feasible
set M can be approximated arbitrarily well by a level set of a single smooth function with
certain regularity properties. This function will be constructed with the aid of a so-called
mollifier. Moreover, we will show a correspondence between Karush–Kuhn–Tucker points
of the original and the smoothed problem, along with their Morse indices. The latter result
will enable us to prove the connectedness of the so-call min–max digraph for semi-infinite
problems in Sect. 4. However, the result about Morse indices in Theorem 3.7(c) has a very
elaborate proof on the one hand, and it is basically related to finite, and not semi-infinite
programming, on the other hand. For these reasons this proof is given in [24], the second part
of this article, along with more results on the finite case.

We emphasize that a smoothing procedure for finite optimization problems is given in
[22]. There the main idea is to use the logarithmic barrier approach to approximate finitely
many inequality constraints gi (x) ≥ 0, i ∈ I, |I | < ∞, by one smooth and nondegenerate
constraint

∑
i∈I ln(gi (x)) ≥ ln(ε) for ε > 0. Under mild assumptions it is shown that the

approximating feasible sets Mε converge to the original feasible set M in the Hausdorff dis-
tance, that for sufficiently small ε > 0 the sets Mε are homeomorphic to M , and that there is
a correspondence between the Karush–Kuhn–Tucker points of the original and the smoothed
problem, along with their Morse indices. A similar approach is taken in [14] to smooth finite
maximum functions. In the following we briefly explain why obvious generalizations of this
approach to semi-infinite programming are not successful.

There are two standard arguments which connect semi-infinite to finite optimization prob-
lems. First, a sufficiently fine discretization of the index set leads to an arbitrarily accurate
outer approximation of M by finitely many inequality constraints which could, in a next step,
be smoothed by the logarithmic barrier approach. Unfortunately, the so-called second order
shift-terms of semi-infinite programs (see Sect. 2.2) are ignored by the discretized problem,
so that correspondences of Morse indices cannot even be established between the original
and the discretized problem, let alone the smoothed discretized problem.

Second, assuming the regularity conditions of the so-called Reduction Ansatz (see
Sect. 2.2) at some point x̄ ∈ M , the feasible set can be described by finitely many smooth
inequality constraints locally around x̄ . The logarithmic barrier approach for this locally re-
duced semi-infinite problem is used in [20]. While Morse indices are modeled well in this
approach, the assumption of the Reduction Ansatz in the whole feasible set is not generic
[26] and, thus, too strong for our analysis.

Another obvious generalization of the approach from finite programming is to directly
use the barrier term

∫
Y ln(g(x, y)) dy for the semi-infinite problem. For infinite quadratic

programming problems a related interior point approach is presented in [28]. For nonlinear
semi-infinite problems, however, this logarithmic barrier term is neither self-concordant nor
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does it necessarily enforce interior points, as an example from [20] shows. The main problem
is that in some situations even the singularity of the logarithm is smoothed by the integral, and
boundary points can become feasible for the approximation (note that

∫
ln(y) = y ln(y)− y

can be continuously extended to y = 0 with value 0). Logarithmic barrier methods for the
numerical solution of semi-infinite problems, but unrelated to a smooth and nondegenerate
approximation of the feasible set, are studied in [1,27].

An approximation of the feasible set in semi-infinite optimization by a quadratic distance
function is presented in [13]. While smoothness of the approximating problem is shown,
it is inherently degenerate, so that no results on Morse indices can be expected from this
approach.

To our knowledge there is little work on the use of mollifiers in optimization. A basic ref-
erence for the definition of subgradients for certain discontinuous functions by mollification
is [6].

2 Preliminaries

2.1 Properties of the feasible set and stationarity

Under our continuity and compactness assumptions it is easy to see that the semi-infinite
constraint in SIP is equivalent to

G(x) := min
y∈Y

g(x, y) ≥ 0,

which means that the feasible set M is the upper level set of some auxiliary function:

M = {x ∈ R
n | G(x) ≥ 0}. (2.1)

The auxiliary function G is related to the so-called lower level problem

Q(x) : min
y∈Rm

g(x, y) subject to v(y) ≥ 0. (2.2)

In contrast to the upper level problem which consists in minimizing f over M with the deci-
sion variable x , in the lower level problem x plays the role of an n-dimensional parameter,
and y is the decision variable. In fact, the function G is the optimal value function of this
parametric problem, that is, G(x) is the globally minimal value of Q(x) for x ∈ R

n . We
denote the globally minimal points of Q(x) by

Y�(x) = {y ∈ Y | g(x, y) = G(x)}.
Since G is continuous [5], M is a closed set, and a feasible point x̄ with G(x̄) > 0 lies in the
topological interior of M .

For investigations of the local structure of M or of local optimality conditions we are only
interested in points from the boundary ∂ M of M . In view of the continuity of G it suffices to
consider the zeros of G, that is, points x ∈ R

n for which Q(x) has vanishing minimal value.
We denote the corresponding globally minimal points of Q(x) by

Y0(x) = {y ∈ Y | g(x, y) = 0}.
The set Y0(x) is also called the active index set of x for SIP. Note that each point x ∈ ∂ M
satisfies Y0(x) �= ∅, but that the reverse is not necessarily the case.

A nice topological structure of M at its boundary points can be guaranteed under con-
straint qualifications. To formulate a basic constraint qualification, we need some smoothness
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property of G. As an optimal value function, G is not necessarily smooth, but due to a result
by Danskin it is at least directionally differentiable:

Theorem 2.1 ([5]) The optimal value function G of Q(x) is directionally differentiable at
each x̄ ∈ R

n with

G ′(x̄, d) = min
y∈Y�(x̄)

Dx g(x̄, y) d (2.3)

for all d ∈ R
n.

Here Dx g denotes the row vector of partial derivatives of g with respect to x .
According to [35], for directionally differentiable problems the natural extension of the

well-known and basic Mangasarian–Fromovitz constraint qualification [29] at a zero x̄ of G
is

{d ∈ R
n | G ′(x̄, d) > 0} �= ∅.

Plugging in (2.3) we obtain the following definition which is well-known for semi-infinite
programs [18,26].

Definition 2.2 At x̄ ∈ M the Extended Mangasarian–Fromovitz Constraint Qualification
(EMFCQ) is said to hold if there exists some vector d ∈ R

n with

Dx g(x̄, y) d > 0 for all y ∈ Y0(x̄). (2.4)

Each vector d ∈ R
n satisfying (2.4) is called EMF vector at x̄ .

Note that (2.4) is trivially satisfied for G(x̄) > 0 since then we have Y0(x̄) = ∅. Moreover,
it is not hard to see that at a zero x̄ of G in the topological interior of M no EMF vector
can exist. Hence, under EMFCQ the zero set of G and ∂ M coincide or, in other words, we
have x ∈ ∂ M if and only if Y0(x) �= ∅. In [26] it is shown that EMFCQ holds generically
in semi-infinite programming, that is, for defining functions of SIP in general position. It is,
thus, a weak assumption.

The following lemma is easy to see.

Lemma 2.3 Let d ∈ R
n be an EMF vector at x̄ ∈ ∂ M. Then there exists some t̄ > 0 such

that for all t ∈ (0, t̄) we have G(x̄ + td) > 0.

At a local minimizer x̄ ∈ ∂ M of SIP the system

D f (x̄)d < 0, G ′(x̄, d) = min
y∈Y0(x̄)

Dx g(x̄, y) d > 0 (2.5)

can thus not be solvable, and by the Lemma of Gordan [3], the latter is equivalent to

0 ∈ conv (−D f (x̄), Dx g(x̄, y), y ∈ Y0(x̄)) , (2.6)

where conv stands for the convex hull. This leads to the following theorem.

Theorem 2.4 ([21]) Let x̄ ∈ ∂ M be a local minimizer of SIP. Then there exist p ∈ N,
yi ∈ Y0(x̄) and nontrivial multipliers κ ≥ 0, λi ≥ 0, 1 ≤ i ≤ p, such that

κ D f (x̄) −
p∑

i=1

λi Dx g(x̄, yi ) = 0. (2.7)

Using the Lemma of Gordan again, it is easy to see that under EMFCQ at x̄ one can choose
κ = 1 in (2.7). Any point x̄ ∈ M that satisfies (2.7) with p ∈ N, κ = 1, yi ∈ Y0(x̄), and
λi ≥ 0, 1 ≤ i ≤ p, is called Karush–Kuhn–Tucker (KKT) point of SIP.
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2.2 The Reduction Ansatz

For theoretical as well as numerical purposes it is of crucial importance to keep track of the
elements of the lower level solution set Y�(x) when its argument x varies. Being solutions
of Q(x), under a constraint qualification they satisfy the first order necessary optimality
condition of Karush–Kuhn–Tucker. Whereas the results in the previous section hold for
an abstract index set Y , here we will need the description of Y by inequality constraints
vk, k ∈ K := {1, . . . , s}. We say that the Linear Independence Constraint Qualification
(LICQ) holds at ȳ in Y if the gradients Dvk(ȳ), k ∈ K0(ȳ), are linearly independent. Here
K0(ȳ) = {k ∈ K | vk(ȳ) = 0} is the lower level active index set. Let

L(x, y, γ ) = g(x, y) − γ 	v(y)

denote the Lagrangian of Q(x) with multiplier vector γ ∈ R
s . Then for x̄ ∈ M and each

ȳ ∈ Y�(x̄) such that LICQ holds at ȳ in Q(x̄), there exists a unique multiplier vector γ̄ ≥ 0
with DyL(x̄, ȳ, γ̄ ) = 0 and γk · vk(ȳ) = 0, k ∈ K .

Keeping track of the elements of Y�(x) can now be achieved, for example, by means of the
implicit function theorem. For x̄ ∈ M a local minimizer ȳ of Q(x̄) is called nondegenerate
in the sense of Jongen/Jonker/Twilt [25], if LICQ, strict complementary slackness (SCS) and
the second order sufficiency condition (SOSC) D2

yL(x̄, ȳ, γ̄ )|TȳY 
 0 are satisfied. Here
D2

yL is the Hessian of L with respect to y, TȳY is the tangent space to Y at ȳ, and A 
 0
stands for the positive definiteness of a matrix A. SCS means γ̄k > 0 for all k ∈ K0(ȳ).

The Reduction Ansatz is said to hold at x̄ ∈ M if all global minimizers of Q(x̄) are non-
degenerate. Since nondegenerate minimizers are isolated, and Y is a compact set, its closed
subset Y�(x̄) can only contain finitely many points, say Y�(x̄) = {ȳ1, . . . , ȳ p} with p ∈ N.
By a result from [8] the local variation of these points with x can be described by the implicit
function theorem.

In fact, for x locally around x̄ there exist continuously differentiable functions yi (x), 1 ≤
i ≤ p, with yi (x̄) = ȳi such that yi (x) is the locally unique local minimizer of Q(x) around
ȳi . Moreover, if γ̄ i is the uniquely determined multiplier vector corresponding to ȳi , then
there exists a continuously differentiable function γ i (x) with γ i (x̄) = γ̄ i such that γ i (x)

is the unique multiplier vector corresponding to yi (x), 1 ≤ i ≤ p. It turns out that the
functions Gi (x) := g(x, yi (x)) are even C2 in a neighborhood of x̄ . Their gradients are

DGi (x̄) = Dx g(x̄, ȳi ),

and their Hessians can be computed to be

D2Gi (x̄) = D2
x g(x̄, ȳi ) + S(x̄, ȳi , γ̄ i )

with the so-called second order shift terms

S(x̄, ȳi , γ̄ i ) = −
(

D2
yx g
0

)	 (
D2

yL −D	vK i
0−DvK i

0
0

)−1 (
D2

yx g
0

) ∣
∣
∣
∣
(x̄,ȳi ,γ̄ i )

,

where vK i
0

stands for the vector with entries vk , k ∈ K0(ȳi ).
The Reduction Ansatz was originally formulated in [16,36]. A major consequence of the

Reduction Ansatz is the so-called Reduction Lemma: if the Reduction Ansatz holds at x̄ ,
then for all x from a neighborhood U of x̄ we have

G(x) = min
1≤i≤p

Gi (x).
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In view of (2.1) this means that M can locally be described by finitely many C2-constraints,
that is, SIP is locally equivalent to the smooth finite optimization problem

SI Pred : min
x∈Rn

f (x) subject to Gi (x) ≥ 0, i = 1, . . . , p. (2.8)

Examples show that the Reduction Ansatz cannot be expected to hold everywhere in the
feasible set of a generic semi-infinite program [26]. As nondegeneracy in the sense of
Jongen/Jonker/Twilt is a local property, we can, however, define a nondegenerate KKT point
of SIP via the locally reduced problem SI Pred . Let

L(x, λ) = f (x) −
p∑

i=1

λi Gi (x)

denote the Lagrangian of SI Pred with multiplier vector λ ∈ R
p .

Definition 2.5 A point x̄ ∈ M is called nondegenerate Karush–Kuhn–Tucker point of SIP
if the Reduction Ansatz holds at x̄ and if x̄ is a nondegenerate Karush–Kuhn–Tucker point
of SI Pred , that is, the following three conditions hold:

(a) LICQ holds at x̄ , and there exists a (unique) multiplier vector λ̄ ≥ 0 with Dx L(x̄, λ̄)= 0.
(b) The multipliers satisfy λ̄i > 0, i = 1, . . . , p.
(c) The matrix D2

x L(x̄, λ̄)|Tx̄ Mred is nonsingular.

The number of negative eigenvalues of the matrix in (c) is called the Morse index of x̄ .

For generic semi-infinite problems all Karush–Kuhn–Tucker points are nondegenerate
[34,37]. In this sense, nondegeneracy of KKT points for SIP is a weak assumption. Clearly, a
nondegenerate KKT point of SIP is a local minimizer if and only if its Morse index vanishes.

2.3 Mollifiers

With the Euclidean norm || · ||2 on R
n the standard mollifier (cf., e.g., [7]) is the C∞-function

η(x) =
⎧
⎨

⎩

C exp

(
1

||x ||22−1

)

, ||x ||2 < 1

0, ||x ||2 ≥ 1,

where C > 0 is chosen such that
∫

Rn η(x) dx = 1. For ε > 0 we put

ηε(x) = 1

εn
η

( x

ε

)
.

The function ηε is also C∞, it satisfies
∫

Rn ηε(x) dx = 1, and its support {x ∈ Rn | ηε(x) �= 0}
is the closed ball B(0, ε) with B(0, ε) = {x ∈ R

n | ||x ||2 < ε}, where Ā denotes the topolog-
ical closure of a set A.

Definition 2.6 For ε > 0 the ε−mollification of a locally integrable function F : R
n → R

is the convolution Fε = ηε ∗ F on R
n , that is,

Fε(x) =
∫

Rn
ηε(x − z)F(z) dz =

∫

B(0,ε)

ηε(z)F(x − z) dz

for all x ∈ R
n .
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Theorem 2.7 ([7])

(a) For all ε > 0, the ε-mollification Fε is in C∞(Rn, R).
(b) If F is continuous on R

n, then Fε converges to F uniformly on compact sets for ε → 0.

For further details about mollifiers we refer the interested reader to [7].

3 The smoothing approach

3.1 Main results

Throughout this section we make the following three assumptions.

Assumption 3.1 The feasible set M of SIP is nonempty and compact.

Assumption 3.2 The EMFCQ holds everywhere in M .

Assumption 3.3 All KKT points of SIP are nondegenerate.

Our smoothing approach is based on the mollification of the optimal value function G:

Gε = ηε ∗ G = ηε ∗ min
y∈Y

g(·, y).

In view of Theorem 2.7 the function Gε is C∞ for each ε > 0, and Gε converges to G
uniformly on compact sets for ε → 0.

Intuitively, for sufficiently small ε > 0 the set

Mε = {x ∈ R
n | Gε(x) ≥ 0},

and the smooth finite optimization problem

SI Pε : min
x∈Rn

f (x) subject to Gε(x) ≥ 0

should be strongly related to M and SIP, respectively. We will make this statement precise
in the following theorems, which hold under our general Assumptions 3.1–3.3.

Theorem 3.4 Mε converges to M in the Hausdorff distance for ε → 0.

Theorem 3.5 For all sufficiently small ε > 0, EMFCQ holds everywhere in the set Mε .

Theorem 3.6 For all sufficiently small ε > 0, the set Mε is homeomorphic with M.

Theorem 3.7

(a) The set K K T ( f, M) of Karush–Kuhn–Tucker points of SIP is finite.
(b) For each x̄ ∈ K K T ( f, M) let U (x̄) be some neighborhood of x̄ . Then outside the sets

U (x̄), x̄ ∈ K K T ( f, M), the problem SI Pε has no KKT points for sufficiently small
ε > 0.

(c) The neighborhoods U (x̄), x̄ ∈ K K T ( f, M), from part (b) can be chosen such that each
U (x̄) contains exactly one KKT point xε of SI Pε for sufficiently small ε > 0. Moreover,
xε is nondegenerate, and the Morse index of x̄ in SIP and the Morse index of xε in SI Pε

coincide.

In the remainder of this section we will prove Theorems 3.4, 3.5, 3.6, and parts (a) and (b)
of Theorem 3.7. The proof Theorem 3.7(c) is only given for a special case, since the proof
for the general case would go beyond the scope of the present article. The complete proof
can be found in the separate paper [24].
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3.2 Convergence of Mε to M

Lemma 3.8 Let x̄ ∈ R
n, ε > 0, a ≤ b, and G(x) ∈ [a, b] for all x ∈ B(x̄, ε). Then we also

have Gε(x̄) ∈ [a, b].
Proof As the set x̄ − B(0, ε) coincides with B(x̄, ε), we have G(x̄ − z) ∈ [a, b] for all
z ∈ B(0, ε). The nonnegativity of ηε implies

Gε(x̄) =
∫

B(0,ε)

ηε(z)G(x̄ − z) dz ≥ a ·
∫

B(0,ε)

ηε(z) dz = a

and analogously Gε(x̄) ≤ b. 
�

We denote the distance of a point a ∈ R
n from a set B ⊂ R

n by

dist(a, B) = inf
b∈B

||a − b||2 ,

the directed distance of a set A ⊂ R
n to a set B ⊂ R

n by

h(A, B) = sup
a∈A

dist(a, B) = sup
a∈A

inf
b∈B

||a − b||2 ,

and the Hausdorff distance of the sets A and B by

distH (A, B) = max{ h(A, B), h(B, A) }.
Proof of Theorem 3.4 We give the proof in two parts. In the first part of the proof we show
that h(Mε, M) tends to zero for ε → 0. Choose ε > 0 and some arbitrary x̄ ∈ Mε, that is,
Gε(x̄) ≥ 0. Assume by contradiction that dist(x̄, M) > ε. Then the whole ball B(x̄, ε) is
contained in the set complement of M , that is, G(x) < 0 holds for all x ∈ B(x̄, ε). As an
immediate consequence of Lemma 3.8 we obtain Gε(x̄) < 0, in contradiction to the choice
of x̄ . It follows dist(x̄, M) ≤ ε and h(Mε, M) = supx∈Mε dist(x, M) ≤ ε. This shows
limε→0 h(Mε, M) = 0.

In the second part of the proof we show limε→0 h(M, Mε) = 0. Assume by contradiction
that this is not the case. Then there exist some δ > 0 and a sequence εν ↘ 0 such that for all
ν ∈ N we have

δ < h(M, Mεν

) = sup
x∈M

dist(x, Mεν

).

Hence, for each ν ∈ N there exists some xν ∈ M with

δ < dist(xν, Mεν

). (3.1)

By the compactness of M , the sequence (xν)ν converges to some x̄ ∈ M without loss of
generality (here and in the following we briefly write (xν)ν for a sequence (xν)ν∈N). The
point x̄ either satisfies G(x̄) > 0 or G(x̄) = 0.

Case 1: G(x̄) > 0.
In view of Theorem 2.7(b), the sequence (Gεν

(x̄))ν converges to G(x̄) > 0. Therefore we
have Gεν

(x̄) > 0 for sufficiently large ν ∈ N, that is, x̄ ∈ Mεν
. It follows

0 ≤ dist(xν, Mεν

) = inf
z∈Mεν

||xν − z||2 ≤ ||xν − x̄ ||2 → 0,

in contradiction to (3.1).
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Case 2: G(x̄) = 0.
Since EMFCQ holds at x̄ , we can choose an EMF vector d ∈ R

n and, in view of Lemma 2.3,
obtain G(x̄ + td) > 0 for all sufficiently small t > 0. Now choose a sequence tk ↘ 0. For
each k ∈ N the sequence (Gεν

(x̄ + tkd))ν converges to G(x̄ + tkd) which is positive for
sufficiently large k. Therefore we have Gενk

(x̄ + tkd) > 0 for all sufficiently large νk ∈ N,
that is, x̄ + tkd ∈ Mενk . It follows

0 ≤ dist(xνk , Mενk
) ≤ ||xνk − (x̄ + tkd)||2 ≤ ||xνk − x̄ ||2 + tk ||d||2 → 0,

in contradiction to (3.1).
The combination of the two parts of the proof shows that distH (Mε, M) tends to zero for

ε → 0. 
�

For later use we remark that with the same techniques as in the first part of the above proof it
is easy to show convergence of the sets (Gε)−1(0) to G−1(0) in the directed distance, where
(Gε)−1(0) and G−1(0) denote the zeros sets of Gε and G, respectively:

lim
ε→0

h
(
(Gε)−1(0), G−1(0)

) = 0. (3.2)

3.3 Stability of EMFCQ and homeomorphy of Mε with M

Regarding the next lemma note that for a directionally differentiable function G the direc-
tional derivative G ′(x, d) is not necessarily continuous in (x, d) (take, e.g., G(x) = −|x |,
x̄ = 0, d0 = 1).

Lemma 3.9 For x̄, d0 ∈ R
n let G ′(x̄, d0) > 0. Then there exist neighborhoods U and D of

x̄ and d0, respectively, such that for all x ∈ U and all d ∈ D we have G ′(x, d) > 0.

Proof Assume the contrary. Then there exist sequences xν → x̄ and dν → d0 with

0 ≥ G ′(xν, dν) = min
y∈Y�(xν )

Dx g(xν, y) dν .

Hence for each ν ∈ N there exists some yν ∈ Y�(xν) with

0 ≥ Dx g(xν, yν) dν . (3.3)

As the sequence (yν)ν is contained in the compact set Y it converges to ȳ ∈ Y without loss of
generality. The closedness of the solution point mapping Y�(·) [19] implies even ȳ ∈ Y�(x̄).
Taking the limit in (3.3) thus leads to the contradiction

0 ≥ Dx g(x̄, ȳ) d0 ≥ min
y∈Y (x̄)

Dx g(x̄, y) d0 = G ′(x̄, d0) > 0.


�

The following lemma shows that the directional derivative of the smooth function Gε can be
written as the mollification of the directional derivative of G.

Lemma 3.10 For all x, d ∈ R
n and ε > 0 we have

DGε(x) d =
∫

B(0,ε)

ηε(z) G ′(x − z, d) dz

=
∫

B(0,ε)

ηε(z) min
y∈Y�(x−z)

(Dx g(x − z, y) d) dz.
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Proof Consider the functions

Fk
x,d(z) = ηε(z)

G(x + (1/k)d − z) − G(x − z)

1/k

on R
n with k ∈ N. It is not hard to see that

DGε(x) d = lim
k→∞

∫

B(0,ε)

Fk
x,d(z) dz

holds. Moreover, due to the directional differentiability of G the pointwise limit of Fk
x,d exists

and is given by F�
x,d(z) = ηε(z) G ′(x − z, d), so that we may write

∫

B(0,ε)

ηε(z) G ′(x − z, d) dz =
∫

B(0,ε)

lim
k→∞ Fk

x,d(z) dz .

Hence, the first equation of the assertion is shown if in the above formulas taking limits
and integrals may be interchanged. We will prove the latter using Lebesgue’s dominated
convergence theorem.

In fact, since G is Lipschitz continuous on compact sets (cf., e.g., [4]), we may choose a
Lipschitz constant L for G on B(x, 2ε). Then for all sufficiently large k and all z ∈ B(0, ε)

we obtain
∣
∣
∣
∣
G(x + (1/k)d − z) − G(x − z)

1/k

∣
∣
∣
∣ ≤ L||d||

and, thus, for all z ∈ R
n

∣
∣
∣Fk

x,d(z)
∣
∣
∣ ≤ L||d|| ηε(z)

with
∫

Rn L||d|| ηε(z) dz = L||d|| < ∞. Due to the dominated convergence theorem this
shows the first asserted equation. The second equation immediately follows by plugging in
(2.3). 
�

Lemma 3.11 For x̄, d0 ∈ R
n let G ′(x̄, d0) > 0. Then there exist neighborhoods U and D

of x̄ and d0, respectively, and some ε̄ > 0 such that for all x ∈ U, d ∈ D and ε ∈ (0, ε̄) we
have DGε(x) d > 0.

Proof From Lemma 3.9 let Ũ and D be the neighborhoods of x̄ and d0, respectively, such
that G ′(x, d) > 0 holds for all x ∈ Ũ and d ∈ D. Choose δ > 0 with B(x̄, δ) ⊂ Ũ , and put
ε̄ = δ/2 as well as U = B(x̄, ε̄). Then for all x ∈ U , d ∈ D, ε ∈ (0, ε̄), and z ∈ B(0, ε) we
have x − z ∈ B(x̄, δ) ⊂ Ũ and, thus, G ′(x − z, d) > 0. Lemma 3.10 and the positivity of ηε

on B(0, ε) now imply

DGε(x) d =
∫

B(0,ε)

ηε(z) G ′(x − z, d) dz > 0.


�

Proof of Theorem 3.5 For later use in the proof of Theorem 3.6 we prove a slightly stronger
result than required in Theorem 3.5. In fact, let d ∈ C1(Rn, R

n) be a bounded vector field
such that for all x ∈ ∂ M , d(x) is an EMF vector at x (cf. [26,33] for the construction of
such a field). We will actually show that for all sufficiently small ε > 0 and all x ∈ ∂ Mε , the
(unperturbed) vector d(x) can be used as an EMF vector at x .
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For each x ∈ ∂ M we choose the neighborhoods U (x) and D(x) as well as ε̄(x) from
Lemma 3.11. Since ∂ M is compact, we can choose finitely many points xi ∈ ∂ M, 1 ≤ i ≤
m ∈ N with ∂ M ⊂ ⋃m

i=1 U (xi ). With the abbreviations Ui = U (xi ), Di = D(xi ), and
ε̄i = ε̄(xi ), Lemma 3.11 yields DGε(x)d > 0 for all x ∈ Ui , d ∈ Di , ε ∈ (0, ε̄i ), and
1 ≤ i ≤ m.

As the compact set ∂ M has a positive distance from the open set
⋃m

i=1 Ui , we can find
some sufficiently small α > 0 so that {x ∈ R

n | dist(x, ∂ M) < α}, the “α-tube” around ∂ M ,
is contained in

⋃m
i=1 Ui . Due to the continuity of the vector field d , for sufficiently small

α > 0 and after possibly increasing m, we have DGε(x)d(x) > 0 for all x ∈ Ui , ε ∈ (0, ε̄i ),
and 1 ≤ i ≤ m.

Recall that under EMFCQ the sets ∂ M and G−1(0) coincide. In view of (3.2) we can
choose ε > 0 so small that (Gε)−1(0), the zero set of Gε, is contained in the latter α-tube
and, hence, also in

⋃m
i=1 Ui . This means that for each x ∈ (Gε)−1(0) we can find some

i ∈ {1, . . . , m} with x ∈ Ui and, thus, DGε(x)d(x) > 0 for all ε ∈ (0, ε̄i ). In particular, x
cannot be an interior point of Mε. Now the assertion follows for all ε ∈ (0, min1≤i≤m ε̄i ). 
�

We emphasize that for Mε the notions of EMFCQ and LICQ coincide.

Proof of Theorem 3.6 The bounded vector field d from the proof of Theorem 3.5 is com-
pletely integrable and defines a flow on R

n . As we have seen in the above proof, for sufficiently
small ε > 0 and x ∈ ∂ Mε we have DGε(x)d(x) �= 0, so that the trajectories of this flow
intersect ∂ Mε transversally, with a change of sign in Gε while passing ∂ Mε. The proof can
now be completed along the lines of the corresponding proofs in [12,26]. 
�

3.4 Correspondences between KKT points

It remains to show Theorem 3.7.

Proof of Theorem 3.7(a) Since all elements of K K T ( f, M) are nondegenerate, they are
isolated elements of the compact set M . As the set K K T ( f, M) is closed, it can thus contain
only finitely many elements. 
�

Proof of Theorem 3.7(b) For each x̄ ∈ K K T ( f, M) let U (x̄) be some neighborhood of x̄ .
By part a) the set K K T ( f, M) is finite, so that

V =
⋃

x̄∈K K T ( f,M)

U (x̄)

is an open set. It follows that M \ V is compact and contains no KKT points of SIP.
Now consider any point x̄ ∈ ∂ M which is not a KKT point of SIP. Since EMFCQ holds

at x̄ , (2.7) does not have a nontrivial solution κ ≥ 0, λi ≥ 0, 1 ≤ i ≤ p with p ∈ N, neither.
This means that (2.6) is violated and, by the Lemma of Gordan, that (2.5) has a solution
d0 ∈ R

n . In particular, we have D f (x̄)d0 < 0, and d0 is an EMF vector at x̄ .
According to Lemma 3.11 we can choose a neighborhood U of x̄ and some ε̄ such that

DGε(x)d0 > 0 holds for all x ∈ U and ε ∈ (0, ε̄). After possibly shrinking U we also have
D f (x)d0 < 0 for all x ∈ U . By the Lemma of Gordan, for all x ∈ U and ε ∈ (0, ε̄) we
find 0 �∈ conv(−D f (x), DGε(x)). The latter in particular holds for all x ∈ U ∩ Mε. For
x ∈ U ∩ ∂ Mε it means that x does not even satisfy the Fritz John condition, let alone the
KKT condition, and no x ∈ U from the interior of Mε can be stationary since D f (x) cannot
vanish. We have thus shown that for each x̄ ∈ ∂ M we can construct a neighborhood U (x̄)
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and a scalar ε̄(x̄) > 0 such that for all ε ∈ (0, ε̄(x̄)) no element of U (x̄)∩ Mε is a KKT point
for SI Pε.

An analogous result can be shown for any point x̄ from the topological interior of M
which is not a KKT point of SIP. In fact, such a point is simply characterized by the condi-
tion D f (x̄) �= 0, and by continuity there exists some neighborhood U (x̄) lying in the interior
of M with D f (x) �= 0 for all x ∈ U (x̄). In view of Theorem 3.4 there exists some ε̄(x̄) such
that for all ε ∈ (0, ε̄(x̄)) the neighborhood U (x̄) is also contained in the interior of Mε , that
is, the KKT condition of SI Pε is D f (x) = 0 for any x ∈ U (x̄). We have thus shown that
for all ε ∈ (0, ε̄(x̄)) no element of U (x̄) ∩ Mε is a KKT point for SI Pε.

Since the compact set M\V can be covered by finitely many of such neighborhoods U (xi ),
1 ≤ i ≤ m, with m ∈ N and xi ∈ M\V , the assertion follows for all ε ∈ (0, min1≤i≤m ε̄(xi )).


�

We prove Theorem 3.7(c) only for a special case in the present article. Let x̄ be one of the
finitely many (nondegenerate) KKT points of SIP. We have to show that there exists a neigh-
borhood U of x̄ such that for sufficiently small ε > 0 the set U contains exactly one KKT
point xε of SI Pε . Moreover, xε has to be nondegenerate and to possess the same Morse
index as x̄ .

As the Reduction Ansatz holds at x̄ , locally around x̄ the problem SIP is equivalent to
the locally reduced problem (2.8). It is thus sufficient to show the assertion for the finite
optimization problem

SI Pred : min
x∈Rn

f (x) subject to Gi (x) ≥ 0, i = 1, . . . , p

with C2-constraints Gi , i = 1, . . . , p, all of which are active at x̄ . With I = {1, . . . , p},
G(x) = mini∈I Gi (x), and

Gε(x) =
∫

B(0,ε)

ηε(z)G(x − z) dz (3.4)

its smoothing is

SI Pε : min
x∈Rn

f (x) subject to Gε(x) ≥ 0.

In order to facilitate the exploration of relations between SI Pred and SI Pε at ε = 0, we
transform the integral in (3.4) as follows:

Gε(x) =
∫

B(0,ε)

1

εn
η

( z

ε

)
G(x − z) dz = 1

εn

∫

B(0,1)

η

(
εζ

ε

)

G(x − εζ ) εn dζ

=
∫

B(0,1)

η(z)G(x − εz) dz.

From this reformulation it is clear that Gε(x) depends smoothly on ε, and that G0(x) = G(x)

holds. We emphasize that Gε(x) is now even well-defined for negative values of ε.

Proof of Theorem 3.7(c) for p = 1 In the case p = 1 only one smooth constraint appears
in SI Pred . Then for k ∈ {1, 2} we can write

Dk Gε(x) =
∫

B(0,1)

η(z)Dk G(x − εz) dz
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and consider the function

H(ε, x, λ) =
(

D	 f (x) − λ D	Gε(x)

Gε(x)

)

=
(

D	 f (x) − λ
∫

B(0,1)
η(z)D	G(x − εz) dz

∫
B(0,1)

η(z)G(x − εz) dz

)

.

For the nondegenerate KKT point x̄ of SI Pred with multiplier λ̄ > 0 we find H(0, x̄, λ̄) = 0,
and the Jacobian

D(x,λ) H(0, x̄, λ̄) =
(

D2 L(x̄, λ̄) −D	G(x̄)

DG(x̄) 0

)

is nonsingular. Hence, by the implicit function theorem there exist some ε̄ > 0 and functions
x ∈ C1((−ε̄, ε̄), R

n), λ ∈ C1((−ε̄, ε̄), R) with x(0) = x̄ and λ(0) = λ̄ such that for all
ε ∈ (−ε̄, ε̄), (x(ε), λ(ε)) is the locally unique solution of H(x, λ, ε) = 0. The latter means
that Gε is active at x(ε) and that x(ε) is critical for SI Pε. By continuity arguments, for
sufficiently small ε̄ > 0, λ(ε) is positive, and the Morse indices of x̄ and x(ε) coincide. Alto-
gether, there exists a neighborhood U of x̄ such that for all ε ∈ (0, ε̄) the point xε := x(ε) is
the only KKT point of SI Pε. Moreover, xε is nondegenerate and possesses the same Morse
index as x̄ . 
�

Due to the nonsmoothness of G, in the case p > 1 the proof of Theorem 3.7(c) is significantly
more elaborate. Its details are presented in [24].

4 Connectedness of the min–max digraph

Assume that at any x ∈ M we can define ascent and descent directions for f . Then these
define ascent and descent flows for f , respectively. For compact M suppose that all local
minima and maxima of f on M are isolated critical points. Starting in a neighborhood of a
local minimum we follow the ascent flow and might reach a local maximum. From there we
step downwards via the descent flow and might reach a local minimum. Perhaps the latter
minimum is different from the former one, and we repeat the afore-standing procedure. In
this way we obtain a kind of “bang–bang” path in M which connects certain local minima
and local maxima. The main question that arises is whether we can reach all local minima
via such a bang–bang strategy. Of course, we have to assume that M is connected, since we
only use local information.

Even for finitely many constraints, in general the answer to the latter question is negative.
A two-dimensional counterexample was given by H. Zank (Pers. Comm.), and the general
mechanism which generates obstructions is presented in [15]. In fact, in [15] it is shown that
certain stable absorbing cycles may appear. On the other hand, a special global adaptation of
the metric, constructed in [22], gives a positive result. Moreover, [23] presents an automatic
adaptation of the metric based on local information which generically gives a positive result.

As our subsequent analysis is based on the results in [23], we briefly recall the main ideas.
We slightly strengthen the assumptions of Sect. 3 throughout Sect. 4 as follows.

Assumption 4.1 The feasible set M of SIP is nonempty, compact, and connected.

Assumption 4.2 The EMFCQ holds everywhere in M .

Assumption 4.3 All KKT points of ± f on M are nondegenerate.
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A smooth mapping R from R
n to the set of all symmetric positive definite (n, n)-matrices

is called a variable or Riemannian metric. The gradient gradR f (x̄) of f at x̄ with respect
to the metric R is defined to be the unique vector ξ satisfying the system v	 · R(x̄) · ξ =
v	 · D	 f (x̄), v ∈ R

n . Note that gradR f (x̄) = R(x̄)−1 D	 f (x̄).
Now we fix some sufficiently small ε > 0 and consider the set

Mε = { x ∈ R
n | Gε(x) ≥ 0 }

with the C∞-function Gε from Sect. 3. According to Theorems 3.5, 3.6, and 3.7, Assump-
tions 4.1, 4.2 and 4.3 do not only hold for SIP, but with sufficiently small ε > 0 also for
SI Pε.

In [23] the main idea for the construction of an appropriate Riemannian metric is to
equalize the inequality constraint by adding a quadratic slack variable. Thus the problem

minimize f (x) subject to (x, z) ∈ M̃ε

is considered, where

M̃ε = {
(x, z) ∈ R

n × R | Gε(x) − 1
2 z2 = 0

}
.

Any Riemannian metric on R
n induces a Riemannian metric R̃ on R

n+1 by putting

R̃(x, z) =
(R(x) 0

0 1

)

for (x, z) ∈ R
n+1. The x-part of the gradient gradR̃ f of f on M̃ with respect to R̃ can be

computed to be [23]

gradR̃,x f = gradR f −
(

DGε R−1 D	 f

2Gε + DGε R−1 D	Gε

)

R−1 D	Gε.

It is not hard to see that the vector field x �→ gradR̃,x f (x) is smooth on Mε , and that it
induces a smooth flow 
 : R × Mε → Mε with the interior and the boundary of Mε as
invariant manifolds [23]. Integrating this flow forwards or backwards in time yields ascent
and descent flows, respectively.

The “bang–bang” strategy mentioned in the introduction of this section can now be put
in mathematical terms as follows. Let x̄1 , . . . , x̄ p and ȳ1 , . . . , ȳq be the local minima and
the local maxima of f on Mε, respectively. Choose arbitrarily small neighborhoods (germs)
Ux̄1 , . . . , Uȳq of x̄1 , . . . , ȳq in Mε . We define the so-called (bipartite) min–max digraph as
follows.

Definition 4.4 The set of nodes of the min–max digraph is partitioned into the set of local
minima {x̄1 , . . . , x̄ p} and the set of local maxima {ȳ1 , . . . , ȳq}. There exists an arc from x̄i

to ȳ j (from ȳ j to x̄i ) iff the ascent flow (descent flow) connects some point from Ux̄i (Uȳ j )
with a point of Uȳ j (Ux̄i ).

In terms of the min–max digraph we can reach all local minima via a bang–bang strategy
in case that the digraph is strongly connected. The latter is true for generic metrics:

Theorem 4.5 ([23]) For generic R the corresponding min–max digraph of SI Pε is strongly
connected.
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We emphasize that so-called decomposition points of f on Mε, that is, certain KKT points
with Morse index 1, play a crucial role in the proof of Theorem 4.5. In fact, first the connec-
tivity of the graph with local minimizers and decomposition points as node sets is shown,
and then the decomposition points are “lifted” to local maximizers.

In view of Theorem 3.7 the corresponding KKT points (especially the local minima and
maxima) of SI Pε are arbitrarily close to those of the unperturbed problem SIP. This shows
that SIP can be approximated arbitrarily well by a smooth finite problem SI Pε with strongly
connected min–max digraph. We emphasize that, in contrast to the argumentation in [22,23],
the min–max digraph of SI Pε does not induce a min–max digraph of SIP in our present
approach, since Mε is not necessarily an inner approximation of M .
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